We propose a new type of hybrid systems formed by conventional semiconductor
nanostructures with the addition of remote insulating layers, where the
electron-hole interaction is enhanced by combining quantum and dielectric
confinement over different length scales. Due to the polarization charges
induced by the dielectric mismatch at the semiconductor/insulator interfaces,
we show that the exciton binding energy can be more than doubled. For
conventional III-V quantum wires such remote dielectric confinement allows
exciton binding at room temperature.Comment: 4 pages, 3 PostScript figures embedded, best printed in color. Uses
RevTex, multicol, and psfig styles. To appear in Phys. Rev. Let