Thermokarst topography forms whenever ice-rich permafrost thaws and the ground subsides due to the volume loss when excess ice transitions to water. The Alaska Thermokarst Model (ATM) is a large-scale, state-and-transition model designed to simulate landscape transitions between landscape units, or cohorts, due to thermokarst. The ATM uses a frame-based methodology to track transitions and proportion of cohorts within a 1-km2 grid cell. In the arctic tundra environment, the ATM tracks landscape transitions between non-polygonal ground (meadows), low center polygons, coalescent low center polygons, flat center polygons, high center polygons, ponds and lakes. The transition from one terrestrial landscape type to another can take place if the seasonal ground thaw penetrates underlying ice-rich soil layers either due to pulse disturbance events such as a large precipitation event, wildfire, or due to gradual active layer deepening. The protective layer is the distance between the ground surface and ice-rich soil. The protective layer buffers the ice-rich soils from energy processes that take place at the ground surface and is critical to determining how susceptible an area is to thermokarst degradation. The rate of terrain transition in our model is determined by the soil ice-content, the drainage efficiency (or ability of the landscape to store or transport water), and the probability of thermokarst initiation. Using parameterizations derived from small-scale numerical experiments, functional responses of landscape transitions will be developed and integrated into NGEE-Arctic climate-scale (CLM) modeling efforts.The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science. Additional support is provided by the Alaska Climate Science Center, and the Arctic, Northwest Boreal, and Western Alaska Landscape Conservation Conservatives