research

Annihilating random walks in one-dimensional disordered media

Abstract

We study diffusion-limited pair annihilation A+A0A+A\to 0 on one-dimensional lattices with inhomogeneous nearest neighbour hopping in the limit of infinite reaction rate. We obtain a simple exact expression for the particle concentration ρk(t)\rho_k(t) of the many-particle system in terms of the conditional probabilities P(m;tl;0)P(m;t|l;0) for a single random walker in a dual medium. For some disordered systems with an initially randomly filled lattice this leads asymptotically to ρ(t)ˉ=P(0;2t0;0)ˉ\bar{\rho(t)}=\bar{P(0;2t|0;0)} for the disorder-averaged particle density. We also obtain interesting exact relations for single-particle conditional probabilities in random media related by duality, such as random-barrier and random-trap systems. For some specific random barrier systems the Smoluchovsky approach to diffusion-limited annihilation turns out to fail.Comment: LaTeX, 2 eps-figures, to be published in PR

    Similar works

    Full text

    thumbnail-image

    Available Versions