research

Lattice two-point functions and conformal invariance

Abstract

A new realization of the conformal algebra is studied which mimics the behaviour of a statistical system on a discrete albeit infinite lattice. The two-point function is found from the requirement that it transforms covariantly under this realization. The result is in agreement with explicit lattice calculations of the (1+1)D(1+1)D Ising model and the dd-dimensional spherical model. A hard core is found which is not present in the continuum. For a semi-infinite lattice, profiles are also obtained.Comment: 5 pages, plain Tex with IOP macros, no figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019