A new realization of the conformal algebra is studied which mimics the
behaviour of a statistical system on a discrete albeit infinite lattice. The
two-point function is found from the requirement that it transforms covariantly
under this realization. The result is in agreement with explicit lattice
calculations of the (1+1)D Ising model and the d−dimensional spherical
model. A hard core is found which is not present in the continuum. For a
semi-infinite lattice, profiles are also obtained.Comment: 5 pages, plain Tex with IOP macros, no figure