thesis

The morphology and electrodynamics of the boreal polar winter cusp

Abstract

Thesis (Ph.D.) University of Alaska Fairbanks, 1993The major result of this thesis is the magnetic signatures of the dayside cusp region. These signatures were determined by comparing the magnetic observations to optical observations of different energy particle precipitation regions observed in the cusp. In this thesis, the cusp is defined as the location of most direct entry of magnetosheath particles into the ionosphere. Optical observations show that the observing station rotates daily beneath regions of different incident energy particles. Typically, the station passes from a region in the morning of high energy particles into a region near magnetic noon of very low energy precipitation, and then returns to a region of high energy precipitation after magnetic noon. A tentative identification of the cusp is made on the basis of these observations. The optical observations also are used to determine the upward field aligned current density, which is found to be most intense in the region identified as the cusp. The magnetic field measurements are found to correlate with the optical measurements. When the characteristic energy is high, the spectrogram shows large amplitude broad band signals. The Pc5 component of these oscillations is right hand polarized in the morning, and left hand polarized in the afternoon. During the time the optics detect precipitation with a minimum characteristic energy, the magnetic spectrogram shows a unique narrow band tone at 3-5 mHz. The occurrence statistics of the magnetic oscillations are compared to DMSP satellite observations of the cusp and low latitude boundary layer. The pulses that make the narrow band tone are found to come in wave trains that are phase coherent. These trains of coherent pulses are found to be separated by phase jumps from adjacent wave trains. These jumps in phase occur when a new field aligned current appears on the equatorward edge of the cusp. This combination of phase coherent wave trains associated with poleward propagating auroral forms which are shown to contain intense field aligned currents may be the signature of newly reconnected flux tubes in the ionosphere

    Similar works