The suppressed NMR coherence peak in the fullerene superconductors is
explained in terms of the dampings in the superconducting state induced by the
Coulomb interaction between conduction electrons. The Coulomb interaction,
modelled in terms of the onsite Hubbard repulsion, is incorporated into the
Eliashberg theory of superconductivity with its frequency dependence considered
self-consistently at all temperatures. The vertex correction is also included
via the method of Nambu. The frequency dependent Coulomb interaction induces
the substantial dampings in the superconducting state and, consequently,
suppresses the anticipated NMR coherence peak of fullerene superconductors as
found experimentally.Comment: 4 pages, Revtex, and 2 figures. Revised and final version to appear
in Phys. Rev. Lett. (1998