Abstract

The pinning of an inhomogeneous elastic medium by a disordered substrate is studied analytically and numerically. The static and dynamic properties of a DD-dimensional system are shown to be equivalent to those of the well known problem of a DD-dimensional random manifold embedded in (D+D)(D+D)-dimensions. The analogy is found to be very robust, applicable to a wide range of elastic media, including those which are amorphous or nearly-periodic, with local or nonlocal elasticity. Also demonstrated explicitly is the equivalence between the dynamic depinning transition obtained at a constant driving force, and the self-organized, near-critical behavior obtained by a (small) constant velocity drive.Comment: 20 pages, RevTeX. Related (p)reprints also available at http://matisse.ucsd.edu/~hwa/pub.htm

    Similar works

    Full text

    thumbnail-image

    Available Versions