By using simple mode coupling equations, we investigate the depolarized light
scattering spectra of two so-called "fragile" glassforming liquids, salol
(phenylsalicylate) and CKN (Ca_{0.4}K_{0.6}(NO_3)_{1.4}), measured by Cummins
and coworkers. Nonlinear integrodifferential equations for the time evolution
of the density-fluctuations autocorrelation functions are the basic input of
the mode coupling theory. Restricting ourselves to a small set of such
equations, we fit the numerical solution to the experimental spectra. It leads
to a good agreement between model and experiment, which allows us to determine
how a real system explores the parameter space of the model, but it also leads
to unrealistic effective vertices in a temperature range where the theory makes
critical asymptotic predictions. We finally discuss the relevance and the range
of validity of these universal asymptotic predictions when applied to
experimental data on supercooled liquids.Comment: 31 LaTeX pages using overcite.sty, 10 postscript figures, accepted in
J. Chem. Phy