This chapter starts with a summary of the atomistic processes that occur
during epitaxy. We then introduce density functional theory (DFT) and describe
its implementation into state-of-the-art computations of complex processes in
condensed matter physics and materials science. In particular we discuss how
DFT can be used to calculate parameters of microscopic processes such as
adsorption and surface diffusion, and how they can be used to study the
macroscopic time and length scales of realistic growth conditions. This meso-
and macroscopic regime is described by the ab initio kinetic Monte Carlo
approach. We discuss several specific theoretical studies that highlight the
importance of the different diffusion mechanisms at step edges, the role of
surfactants, and the influence of surface stress. The presented results are for
specific materials (namely silver and aluminum), but they are explained in
simple physical pictures suggesting that they also hold for other systems.Comment: 55 pages, 20 figures, to be published "Growth of Ultrathin Epitaxial
Layers", The Chemical Physics of Soild Surfaces, Vol. 8, Eds D. A. King and
D. P. Woodruff (Elsevier Science, Amsterdam, 1997