We performed density-functional theory calculations using the generalized
gradient approximation for the exhange-correlation functional to investigate
the unusual catalytic behavior of Ru under elevated gas pressure conditions for
the carbon monoxide oxidation reaction, which includes a particularly high CO_2
turnover. Our calculations indicate that a full monolayer of adsorbed oxygen
actuates the high rate, enabling CO_2 formation via both scattering of
gas-phase CO molecules as well as by CO molecules adsorbed at oxygen vacancies
in the adlayer, where the latter mechanism is expected to be very efficient due
to the relatively weak adsorption energy of both CO and O, as well as the close
proximity of these reactants. In the present paper we analyse the bonding and
electronic properties associated with the reaction pathway for CO_2 production
via the scattering reaction. We find that the identified ``bent'' transition
state is due to electron transfer into the unoccupied 2 pi orbitals of the CO
molecule which reduces the Pauli repulsion between the impinging CO and the
O-covered surface. Bond formation to CO_2 then proceeds by electron transfer
back from the CO 2 pi orbitals into the bonding region between CO and the
adsorbed O atom.Comment: 20 pages, 7 figures. J. Vac. Sci. and Techn., in press (submitted
September 1996