This paper investigates origin of the extra stability associated with
particular values (magic numbers) of the total angular momentum of electrons in
a quantum dot under strong magnetic field. The ground-state energy,
distribution functions of density and angular momentum, and pair correlation
function are calculated in the strong field limit by numerical diagonalization
of the system containing up to seven electrons. It is shown that the composite
fermion picture explains the small magic numbers well, while a simple
geometrical picture does better as the magic number increases. Combination of
these two pictures leads to identification of all the magic numbers. Relation
of the magic-number states to the Wigner crystal and the fractional quantum
Hall state is discussed.Comment: 12 pages, 9 Postscript figures, uses jpsj.st