Abstract

A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper-oxides. Using the abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed valence quantum critical point separating two different Fermi liquid phases, {\it i.e.} the Kondo phase and the empty orbital phase. In the mixed valence quantum critical regime, the local moment is only partially quenched and X-ray edge singularities are generated. Around the quantum critical point, a new type of non-Fermi liquid behavior is predicted with an extra specific heat CimpT1/4C_{imp}\sim T^{1/4} and a singular spin-susceptibility χimpT3/4\chi_{imp}\sim T^{-3/4}. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5xUPd_xCu_{5-x} (x=1,1.5x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.Comment: 26 pages, revtex, no figure. Some corrections have been made, but the basic results are kept. To be published in Physical Review

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020