research

A Constrained Path Quantum Monte Carlo Method for Fermion Ground States

Abstract

We propose a new quantum Monte Carlo algorithm to compute fermion ground-state properties. The ground state is projected from an initial wavefunction by a branching random walk in an over-complete basis space of Slater determinants. By constraining the determinants according to a trial wavefunction ∣ΨT⟩|\Psi_T \rangle, we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact if ∣ΨT⟩|\Psi_T\rangle is exact. We report results on the two-dimensional Hubbard model up to size 16×1616\times 16, for various electron fillings and interaction strengths.Comment: uuencoded compressed postscript file. 5 pages with 1 figure. accepted by PRL

    Similar works

    Full text

    thumbnail-image

    Available Versions