Human and Biological Skin-Inspired Electronic Skins for Advanced Sensory Functions and Multifunctionality

Abstract

Department of Energy Engineering (Energy Engineering)The electronic skin (e-skin) technology is an exciting frontier to drive next generation of wearable electronics owing to its high level of wearability to curved human body, enabling high accuracy to harvest information of users and their surroundings. Altough various types of e-skins, based on several signal-transduction modes, including piezoresistive, capacitive, piezoelectric, triboelectric modes, have been developed, their performances (i.e. sensitivity, working range, linearity, multifunctionality, etc.) should be improved for the wearable applications. Recently, biomimicry of the human and biological skins has become a great inspiration for realizing novel wearable e-skin systems with exceptional multifunctionality as well as advanced sensory functions. As an ideal sensory organ, tactile sensing capabilities of human skin was emulated for the development of e-skins with enhanced sensor performances. In particular, the unique geometry and systematic sensory system of human skin have driven new opportunities in multifunctional and highly sensitive e-skin applications. In addition, extraordinary architectures for protection, locomotion, risk indication, and camouflage in biological systems provide great possibilities for second skin applications on user-interactive, skin-attachable, and ultrasensitive e-skins, as well as soft robots. Benefitting from their superior perceptive functions and multifunctionality, human and biological skins-inspired e-skins can be considered to be promising candidates for wearable device applications, such as body motion tracking, healthcare devices, acoustic sensor, and human machine interfaces (HMI). This thesis covers our recent studies about human and biological skin-inspired e-skins for advanced sensory functions and multifunctionality. First, chapter 1 highlights various types of e-skins and recent research trends in bioinspired e-skins mimicking perceptive features of human and biological skins. In chapter 2, we demonstrate highly sensitive and tactile-direction-sensitive e-skin based on human skin-inspired interlocked microdome structures. Owing to the stress concentration effect, the interlocked e-skin experiences significant change of contact area between the interlocked microdomes, resulting in high pressure sensitivity. In addition, because of the different deformation trends between microstructures in mutual contact, the interlocked e-skin can differentiate and decouple sensor signals under different directional forces, such as pressure, tensile strain, shear, and bending. In chapter 3, interlocked e-skins were designed with multilayered geometry. Although interlocked e-skin shows highly sensitive pressure sensing performances, their pressure sensing range is narrow and pressure sensitivity continuously decreases with increasing pressure level. The multilayer interlocked microdome geometry can enhance the pressure-sensing performances of e-skins, such as sensitivity, working range, and linearity. As another approach of e-skin with multilayered geometry, we demonstrate multilayered e-skin based on conductivity-gradient conductive materials in chapter 4. The conducive polymer composites with different conductivity were coated on the microdome pattern and designed as interlocked e-skin with coplanar electrode design, resulting in exceptionally high pressure-sensing performances compared with previous literatures. In chapter 5, inspired by responsive color change in biological skins, we developed mechanochromic e-skin with a hierarchical nanoparticle-in-micropore architecture. The novel design of hierarchical structure enables effective stress concentration at the interface between nanoparticle and porous structure, resulting in impressive color change under mechanical stimuli. In chapter 6, we emulate ultrahigh temperature sensitivity of human and snake skin for temperature-sensitive e-skin. The thermoresponsive composite based on semi-crystalline polymer, temperature sensor shows ultrahigh temperature sensitivity near the melting point of semi-crystalline polymer. In addition, integration of thermochromic composite, mimicking biological skins, enables dual-mode temperature sensors by electrical and colorimetric sensing capabilities. Finally, in chapter 7, we summarize this thesis along with future perspective that should be considered for next-generation e-skin electronics. Our e-skins, inspired by human and biological skin, can provide a new paradigm for realizing novel wearable electronic systems with exceptional multifunctionality as well as advanced sensory functions.clos

    Similar works