Abstract

We propose a theoretical model for the low-frequency noise observed in a quantum point contact (QPC) electrostatically defined in the 2D electron gas at a GaAs-AlGaAs interface. In such contacts electron scattering by soft impurity- or boundary potentials coherently splits an incoming wave function between different transverse modes. Interference between these modes have been suggested to explain observed non-linearities in the QPC-conductance. In this study we invoke the same mechanism and the time-dependent current due to soft dynamical impurity scattering in order to analyze the low-frequency (telegraph-like) noise which has been observed along with a nonlinear conductance. For the simplified case of a channel with two extended (current carrying) modes, a simple analytical formula for the noise intensity is derived. Generally we have found qualitative similarities between the noise and the square of the transconductance. Nevertheless, incidentally there may be situations when noise is suppressed but transconductance enhanced.Comment: 9 revte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020