Modélisation distribuée et évolutive du GaN HEMT

Abstract

L’industrie de télécommunication et les satellites se base majoritairement sur les technologies Si et GaAs. La demande croissante des hauts débits de données entraine une facture élevée en énergie. En outre, la saturation de la bande des basses fréquences, le besoin des débits élevés et les exigences de la haute puissance imposait l’utilisation de la bande hautes fréquences. Dans le but de résoudre les problèmes cités auparavant, la technologie GaN est introduite comme un candidat prometteur qui peut offrir de la haute puissance, taille du circuit plus faible avec une meilleure stabilité mécanique aux environnements hostiles/milieux agressifs. À titre d’exemple, l‘agence spatiale européenne sont en cours de développement d’un circuit à base du GaN sur substrat en Si pour faible cout, une hautes performance et une grande fiabilité. La technologie GaN est assez mature pour proposer de nouveaux systèmes intégrés utilisés pour les puissances microonde ce qui permet une réduction considérable de la taille du système. Étant un semiconducteur à grande bande interdite, GaN peut offrir une haute puissance sous hautes températures (>225oC) avec une bonne stabilité mécanique. Elle présente un facteur de bruit faible, qui est intéressant notamment pour les circuits intégrés aux ondes millimétriques. À noter que la mobilité du GaN par rapport à la température est assez élevée pour proposer des amplificateurs dans la bande W. Avec le progrès du procédé de fabrication du GaN, notre objectif est l’introduction de cette technologie dans des applications industrielles. À cette fin, on désire avoir un modèle du dispositif qui correspond à la meilleure performance. Ensuite, on veut le valider dans une modélisation du circuit. Cette thèse, basée sur la technologie GaN unique développée au 3IT, a pour objectif l’amélioration de l’outil de conception en réduisant son erreur avec une validation de son utilisation dans la conception du circuit. Ce travail est réalisé pour la première fois au 3IT avec des résultats de simulation pour une conception idéale d’un circuit MMIC ainsi que sa démonstration. Une caractérisation des échantillons a été réalisée avec objectif d’extraction de données qui vont servir à l’alimentation de modélisation des transistors sur l’outil ADS. Une fois complétée, la modélisation a été validée par une modélisation des petits et grands signaux et a été testée par une mesure load-pull. Enfin, ce modèle a été utilisé lors de la conception d’un amplificateur pour les applications RF. L’innovation de ce travail réside dans la modélisation de la résistance d’une grille large sous forme de quadripôles parallèles à structure 3D (ou à résistances de grille distribuées) du transistor MOSHEMT GaN. La conception et la fabrication de l’amplificateur à haute puissance (HPA) aux fréquences microondes (≤4GHz) sont réalisés au LNN du 3IT et inclus une couche d’oxyde de grille afin de réduire le courant de fuite notamment pour les tensions Vgs élevées, la grille du transistor forme un serpentin pour fournir une puissance de sortie élevée avec un encombrement spatial minimal et une grille présentant une électrode de champ pour permettre d’augmenter la tension de claquage.Abstract : The telecommunication and satellite industry is mainly relying on Si and GaAs technologies as the demand for a high data rate is continuously growing, leading to higher power consumption. Moreover, the lower frequency band's saturation, the need for high data rate, and high-power force to utilize the high-frequency band. In pursuit of solving the issues mentioned earlier, GaN technology has been introduced as a promising candidate that can offer high power at a smaller circuit footprint and higher mechanical stability in harsh environments. For example, currently, the European space agency (ESA) is developing an integrated circuit with GaN on Si substrate for low cost, high performance, and high reliability. GaN technology is sufficiently mature to propose integrated new systems which are needed for microwave power range. This technology reduces the size of the system considerably. GaN is a wide bandgap semiconductor which can offer remarkably high power at high temperature (>225℃), and it is very stable mechanically. It presents a low noise factor, very interesting for a millimeter-wave integrated circuit. Finally, the mobility of GaN vs. temperature is sufficiently elevated to propose a power amplifier in W-Band. With the improvement of the GaN process, our objective is to introduce this technology for industrial applications. For this purpose, we wish to have a better model of the device that corresponds to the best performance and then validate it by using this model in a circuit. Based on the 3IT's GaN process, which is unique in its context, this thesis aims to improve the design kit by reducing the design model's error and validating it by using it in circuit design. This work is the first to realize in 3IT with simulation results to design an MMIC circuit for demonstration. I first characterized the new samples by performing different measurements than using these measurement data; transistor is modeled in ADS software. Once the model was completed, it is validated by small-signal modeling, and then the large-signal model is tested with non-linear capacitances, current source, and transconductance modeling. Finally, we used this model to design a power amplifier for RF application. The innovation comes from modeling large gate resistance as distributed gate resistance for GaN MOSHEMT transistor and then designing high-power amplifier (HPA) in the frequency range (≤ 4GHz) while using 3IT GaN process which includes first oxide layer to have low gate current and more voltage of Vgs, the second transistor is meander to have high power and third, field plate - gate for high breakdown voltage

    Similar works