research

On the role of the Knudsen layer in rapid granular flows

Abstract

A combination of molecular-dynamics simulations, theoretical predictions, and previous experiments are used in a two-part study to determine the role of the Knudsen layer in rapid granular flows. First, a robust criterion for the identification of the thickness of the Knudsen layer is established: a rapid deterioration in Navier-Stokes-order prediction of the heat flux is found to occur in the Knudsen layer. For (experimental) systems in which heat flux measurements are not easily obtained, a rule-of-thumb for estimating the Knudsen layer thickness follows, namely that such effects are evident within 2.5 (local) mean free paths of a given boundary. Second, comparisons of simulation and experimental data with Navier-Stokes order theory are used to provide a measure as to when Knudsen layer effects become non-negligible. Specifically, predictions that do not account for the presence of a Knudsen layer appear reliable for Knudsen layers collectively composing up to 20% of the domain, whereas deterioration of such predictions becomes apparent when the domain is fully comprised of the Knudsen layer.Comment: 9 figures, accepted to Journal of Fluid Mechanic

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020