We derive a rigorous lower bound on the average local energy for the Ising
model with quenched randomness. The result is that the lower bound is given by
the average local energy calculated in the absence of all interactions other
than the one under consideration. The only condition for this statement to hold
is that the distribution function of the random interaction under consideration
is symmetric. All other interactions can be arbitrarily distributed including
non-random cases. A non-trivial fact is that any introduction of other
interactions to the isolated case always leads to an increase of the average
local energy, which is opposite to ferromagnetic systems where the Griffiths
inequality holds. Another inequality is proved for asymmetrically distributed
interactions. The probability for the thermal average of the local energy to be
lower than that for the isolated case takes a maximum value on the Nishimori
line as a function of the temperature. In this sense the system is most stable
on the Nishimori line.Comment: 10 pages. Submitted to J. Phys. Soc. Jp