Results of analytic and numerical investigations of first-passage properties
of equilibrium fluctuations of monatomic steps on a vicinal surface are
reviewed. Both temporal and spatial persistence and survival probabilities, as
well as the probability of persistent large deviations are considered. Results
of experiments in which dynamical scanning tunneling microscopy is used to
evaluate these first-passage properties for steps with different microscopic
mechanisms of mass transport are also presented and interpreted in terms of
theoretical predictions for appropriate models. Effects of discrete sampling,
finite system size and finite observation time, which are important in
understanding the results of experiments and simulations, are discussed.Comment: 30 pages, 12 figures, review paper for a special issue of JSTA