research

Density-functional theory study of half-metallic heterostructures: interstitial Mn in Si

Abstract

Using density-functional theory within the generalized gradient approximation, we show that Si-based heterostructures with 1/4 layer δ\delta-doping of {\em interstitial} Mn (Mnint_{\mathrm int}) are half-metallic. For Mnint_{\mathrm int} concentrations of 1/2 or 1 layer, the states induced in the band gap of δ\delta-doped heterostructures still display high spin polarization, about 85% and 60%, respectively. The proposed heterostructures are more stable than previously assumed δ\delta-layers of {\em substitutional} Mn. Contrary to wide-spread belief, the present study demonstrates that {\em interstitial} Mn can be utilized to tune the magnetic properties of Si, and thus provides a new clue for Si-based spintronics materials.Comment: 5 pages, 4 figures, PRL accepte

    Similar works