Hydrogen-storing hydride complexes

Abstract

A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH2:MgH2:LiBH4 of 2:1:1. It was found that the incorporation of MgH2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150° C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160° C. and the other around 300° C., with the main hydrogen release temperature reduced from 310° C. to 270° C., while hydrogen is first reversibly released at temperatures as low as 150° C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials

    Similar works