We investigate the feasibility of using ultracold neutral atoms trapped near
a thin superconductor to study vortex noise close to the
Kosterlitz-Thouless-Berezinskii transition temperature. Alkali atoms such as
rubidium probe the magnetic field produced by the vortices. We show that the
relaxation time T1 of the Zeeman sublevel populations can be conveniently
adjusted to provide long observation times. We also show that the transverse
relaxation times T2 for Zeeman coherences are ideal for studying the vortex
noise. We briefly consider the motion of atom clouds held close to the surface
as a method for monitoring the vortex motion.Comment: 4 pages, 1 figur