Abstract

The phenomenon of partial equivalence of statistical ensembles is illustrated by discussing two examples, the mean-field XY and the mean-field spherical model. The configurational parts of these systems exhibit partial equivalence of the microcanonical and the canonical ensemble. Furthermore, the configurational microcanonical entropy is a smooth function, whereas a nonanalytic point of the configurational free energy indicates the presence of a phase transition in the canonical ensemble. In the presence of a standard kinetic energy contribution, partial equivalence is removed and a nonanalyticity arises also microcanonically. Hence in contrast to the common belief, kinetic energy, even though a quadratic form in the momenta, has a non-trivial effect on the thermodynamic behaviour. As a by-product we present the microcanonical solution of the mean-field spherical model with kinetic energy for finite and infinite system sizes.Comment: 21 pages, 11 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019