A long, smooth cylinder is dragged through a water surface to create a cavity
with an initially cylindrical shape. This surface void then collapses due to
the hydrostatic pressure, leading to a rapid and axisymmetric pinch-off in a
single point. Surprisingly, the depth at which this pinch-off takes place does
not follow the expected Froude1/3 power-law. Instead, it displays two
distinct scaling regimes separated by discrete jumps, both in experiment and in
numerical simulations (employing a boundary integral code). We quantitatively
explain the above behavior as a capillary waves effect. These waves are created
when the top of the cylinder passes the water surface. Our work thus gives
further evidence for the non-universality of the void collapse