research

Damage Spreading and Criticality in Finite Random Dynamical Networks

Abstract

We systematically study and compare damage spreading at the sparse percolation (SP) limit for random boolean and threshold networks with perturbations that are independent of the network size NN. This limit is relevant to information and damage propagation in many technological and natural networks. Using finite size scaling, we identify a new characteristic connectivity KsK_s, at which the average number of damaged nodes dˉ\bar d, after a large number of dynamical updates, is independent of NN. Based on marginal damage spreading, we determine the critical connectivity Kcsparse(N)K_c^{sparse}(N) for finite NN at the SP limit and show that it systematically deviates from KcK_c, established by the annealed approximation, even for large system sizes. Our findings can potentially explain the results recently obtained for gene regulatory networks and have important implications for the evolution of dynamical networks that solve specific computational or functional tasks.Comment: 4 pages, 4 eps figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019