Development of MEMS Piezoelectric Vibration Energy Harvesters with Wafer-Level Integrated Tungsten Proof-Mass for Ultra Low Power Autonomous Wireless Sensors

Abstract

La génération d’énergie localisée et à petite échelle, par transformation de l’énergie vibratoire disponible dans l’environnement, est une solution attrayante pour améliorer l’autonomie de certains noeuds de capteurs sans-fil pour l’Internet des objets (IoT). Grâce à des microdispositifs inertiels résonants piézoélectriques, il est possible de transformer l’énergie mécanique en électricité. Cette thèse présente une étude exhaustive de cette technologie et propose un procédé pour fabriquer des microgénérateurs MEMS offrant des performances surpassant l’état de l’art. On présente d’abord une revue complète des limites physiques et technologiques pour identifier le meilleur chemin d’amélioration. En évaluant les approches proposées dans la littérature (géométrie, architecture, matériaux, circuits, etc.), nous suggérons des métriques pour comparer l’état de l’art. Ces analyses démontrent que la limite fondamentale est l’énergie absorbée par le dispositif, car plusieurs des solutions existantes répondent déjà aux autres limites. Pour un générateur linéaire résonant, l’absorption d’énergie dépend donc des vibrations disponibles, mais aussi de la masse du dispositif et de son facteur de qualité. Pour orienter la conception de prototypes, nous avons réalisé une étude sur le potentiel des capteurs autonomes dans une automobile. Nous avons évalué une liste des capteurs présents sur un véhicule pour leur compatibilité avec cette technologie. Nos mesures de vibrations sur un véhicule en marche aux emplacements retenus révèlent que l’énergie disponible pour un dispositif linéaire résonant MEMS se situe entre 30 à 150 Hz. Celui-ci pourrait produire autour de 1 à 10 μW par gramme. Pour limiter la taille d’un générateur MEMS pouvant produire 10 μW, il faut une densité supérieure à celle du silicium, ce qui motive l’intégration du tungstène. L’effet du tungstène sur la sensibilité du dispositif est évident, mais nous démontrons également que l’usage de ce matériau permet de réduire l’impact de l’amortissement fluidique sur le facteur de qualité mécanique Qm. En fait, lorsque l’amortissement fluidique domine, ce changement peut améliorer Qm d’un ordre de grandeur, passant de 103 à 104 dans l’air ambiant. Par conséquent, le rendement du dispositif est amélioré sans utiliser un boîtier sous vide. Nous proposons ensuite un procédé de fabrication qui intègre au niveau de la tranche des masses de tungstène de 500 μm d’épais. Ce procédé utilise des approches de collage de tranches et de gravure humide du métal en deux étapes. Nous présentons chaque bloc de fabrication réalisé pour démontrer la faisabilité du procédé, lequel a permis de fabriquer plusieurs prototypes. Ces dispositifs ont été testés en laboratoire, certains démontrant des performances records en terme de densité de puissance normalisée. Notre meilleur design se démarque par une métrique de 2.5 mW-s-1/(mm3(m/s2)2), soit le meilleur résultat répertorié dans l’état de l’art. Avec un volume de 3.5 mm3, il opère à 552.7 Hz et produit 2.7 μW à 1.6 V RMS à partir d’une accélération de 1 m/s2. Ces résultats démontrent que l’intégration du tungstène dans les microgénérateurs MEMS est très avantageuse et permet de s’approcher davantage des requis des applications réelles.Small scale and localized power generation, using vibration energy harvesting, is considered as an attractive solution to enhance the autonomy of some wireless sensor nodes used in the Internet of Things (IoT). Conversion of the ambient mechanical energy into electricity is most often done through inertial resonant piezoelectric microdevices. This thesis presents an extensive study of this technology and proposes a process to fabricate MEMS microgenerators with record performances compared to the state of the art. We first present a complete review of the physical and technological limits of this technology to asses the best path of improvement. Reported approaches (geometries, architectures, materials, circuits) are evaluated and figures of merit are proposed to compare the state of the art. These analyses show that the fundamental limit is the absorbed energy, as most proposals to date partially address the other limits. The absorbed energy depends on the level of vibrations available, but also on the mass of the device and its quality factor for a linear resonant generator. To guide design of prototypes, we conducted a study on the potential of autonomous sensors in vehicles. A survey of sensors present on a car was realized to estimate their compatibility with energy harvesting technologies. Vibration measurements done on a running vehicle at relevant locations showed that the energy available for MEMS devices is mostly located in a frequency range of 30 to 150 Hz and could generate power in the range of 1-10 μW per gram from a linear resonator. To limit the size of a MEMS generator capable of producing 10 μW, a higher mass density compared to silicon is needed, which motivates the development of a process that incorporates tungsten. Although the effect of tungsten on the device sensitivity is well known, we also demonstrate that it reduces the impact of the fluidic damping on the mechanical quality factor Qm. If fluidic damping is dominant, switching to tungsten can improve Qm by an order of magnitude, going from 103 to 104 in ambient air. As a result, the device efficiency is improved despite the lack of a vacuum package. We then propose a fabrication process flow to integrate 500 μm thick tungsten masses at the wafer level. This process combines wafer bonding with a 2-step wet metal etching approach. We present each of the fabrication nodes realized to demonstrate the feasibility of the process, which led to the fabrication of several prototypes. These devices are tested in the lab, with some designs demonstrating record breaking performances in term of normalized power density. Our best design is noteworthy for its figure of merit that is around 2.5 mW-s-1/(mm3(m/s2)2), which is the best reported in the state of the art. With a volume of 3.5 mm3, it operates at 552.7 Hz and produces 2.7 μW at 1.6 V RMS from an acceleration of 1 m/s2. These results therefore show that tungsten integration in MEMS microgenerators is very advantageous, allowing to reduce the gap with needs of current applications

    Similar works