research

Multiscale quantum-defect theory for two interacting atoms in a symmetric harmonic trap

Abstract

We present a multiscale quantum-defect theory (QDT) for two identical atoms in a symmetric harmonic trap that combines the quantum-defect theory for the van der Waals interaction [B. Gao, Phys. Rev. A \textbf{64}, 010701(R) (2001)] at short distances with a quantum-defect theory for the harmonic trapping potential at large distances. The theory provides a systematic understanding of two atoms in a trap, from deeply bound molecular states and states of different partial waves, to highly excited trap states. It shows, e.g., that a strong pp wave pairing can lead to a lower energy state around the threshold than a ss wave pairing.Comment: 10 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020