research

Spin-subband populations and spin polarization of quasi two-dimensional carriers under in-plane magnetic field

Abstract

Under an in-plane magnetic field, the density of states of quasi two-dimensional carriers deviates from the occasionally stereotypic step-like form both quantitatively and qualitatively. For the first time, we study how this affects the spin-subband populations and the spin-polarization as functions of the temperature, T, and the in-plane magnetic field, B, for narrow to wide dilute-magnetic-semiconductor quantum wells. We examine a wide range of material and structural parameters, focusing on the quantum well width, the magnitude of the spin-spin exchange interaction, and the sheet carrier concentration. Generally, increasing T, the carrier spin-splitting, U, decreases, augmenting the influence of the minority-spin carriers. Increasing B, U increases and accordingly carriers populate majority-spin subbands while they abandon minority-spin subbands. Furthermore, in line with the density of states modification, all energetically higher subbands become gradually depopulated. We also indicate the ranges where the system is completely spin-polarized.Comment: 7 pages, 6 figures, Physical Review B (in press

    Similar works