thesis

New microfabrication method for prototyping integrated microfluidic modules with SR-3000 and polydimethylsiloxane (PDMS)

Abstract

Thesis (M.S.) University of Alaska Fairbanks, 2012This thesis presents the first work on the fabrication of microfluidic modules with SR-3000 Rayzist photoresist paper and polydimethylsiloxane (PDMS). Chapter 1 of the thesis is on the analysis of elemental composition of SR-3000. By using the X-Ray Fluorescence spectrometer we found the SR-3000 sheet is enriched with silicon, the key element for forming covalent bonding to PDMS. Chapters 2, 3,and 4 of the thesis is focused on the characterization of both the hydrophilicity of the plasma-treated SR-3000 surface and the bonding strength between SR-3000 and PDMS. Unfiltered air was used as the process gas for plasma-assisted bonding of SR-3000 to PDMS. Pressure rupture tests were conducted to measure the strength at the bonding interface, which can be as high as 57.7 psi, strong enough to hold the fluid pressure for typical microfluidics applications. The hydrophilicity of SR-3000 is mainly governed by the plasma treatment time. Chapter 5 demonstrates how to use the developed microfabrication method to prototype microfluidic modules for typical microfluidic applications, which include manipulation of laminar flow, mixing of miscible fluids, and production of oil droplets in a stream of water flow

    Similar works