This thesis investigates the compression of computer-generated transmission holograms through lossless schemes such as the Burrows-Wheeler compression scheme (BWCS). Ever since Gabor’s discovery of holography, much research have been done to improve the record­ ing and viewing of holograms into more convenient uses such as video viewing. However, the compression of holograms where recording is performed from virtual scenes has not received much attention. Phase-shift digital holograms, on the other hand, have received more attention due to their practical application in object recognition, imaging, and video sequencing of phys­ ical objects. This study is performed for virtually recorded computer-generated holograms in order to understand compression factors in virtually recorded holograms. We also investigate application of lossless compression schemes to holograms with reduced precision for the in­ tensity and phase values. The overall objective is to explore the factors that affect effective compression of virtual holograms. As a result, this work can be used to assist in the design­ ing of better compression algorithms for applications such as virtual object simulations, video gaming application, and holographic video viewing

    Similar works