We study an exchange coupled system of itinerant electrons and localized
fermion pairs resulting in a resonant pairing formation. This system inherently
contains resonating fermion pairs on bonds which lead to a superconducting
phase provided that long range phase coherence between their constituents can
be established. The prerequisite is that the resonating fermion pairs can
become itinerant. This is rendered possible through the emergence of two kinds
of bond-fermions: individual and composite fermions made of one individual
electron attached to a bound pair on a bond. If the strength of the exchange
coupling exceeds a certain value, the superconducting ground state undergoes a
quantum phase transition into an insulating pair-bond liquid state. The gap of
the superfluid phase thereby goes over continuously into a charge gap of the
insulator. The change-over from the superconducting to the insulating phase is
accompanied by a corresponding qualitative modification of the dispersion of
the two kinds of fermionic excitations. Using a bond operator formalism, we
derive the phase diagram of such a scenario together with the elementary
excitations characterizing the various phases as a function of the exchange
coupling and the temperature.Comment: 10 pages, 5 figure