HIV-1 Drug Resistance to Integrase Strand Transfer Inhibitors in HIV-1 non-B Subtypes

Abstract

Human immunodeficiency syndrome (HIV-1) has infected over 75 million people and over 35 million have succumbed to virus related illnesses. Despite access to a variety of antiretroviral therapy (ART) options, ART programs have been disproportionally spread in the world with low-and middle-income countries (LMICs) facing challenges to access the most potent ART options. With less potent ART remaining in use in LMICs, HIV-1 drug resistance (HIVDR) presents a growing challenge in LMICs. Since approval of the first-generation integrase strand transfer inhibitor (INSTIs), Raltegravir (RAL) in 2007, INSTIs remain the best choice as a backbone of ART. Access to second generation INSTIs, Dolutegravir (DTG) and bictegravir (BIC) in LMICs is based on need and not on a full evaluation of the effectiveness of these treatments in patients infected with non-B HIV-1 subtypes. To address this challenge of limited INSTIs associated HIVDR data in non-B HIV subtypes, we first screened for the presence of INSTIs associated drug resistance mutations (DRMs) in ART naïve and experienced patients in Uganda using Sanger and Illumina sequencing. In Uganda, 47% of patients failing on RAL carry resistance to RAL-and elvitegravir (EVG), and only 4% harbor resistant virus to DTG. A panel of recombinant viruses from patient-derived HIV-1 integrases carrying resistant mutations was created and tested for susceptibility to a panel of INSTIs: EVG, RAL, DTG, BIC, and CAB. The virus carrying N155H or Y143R/S was susceptible to DTG, BIC, and CAB but highly resistant to RAL and EVG (\u3e50-fold change). Two patients, one with E138A/G140A/Q148R/G163R and one with E138K/G140A/S147G/Q148K, displayed the highest reported resistance to RAL, EVG (FC, \u3e1000) and even DTG (FC, \u3e100), BIC (FC, 60-\u3e100), and CAB (FC, 429-\u3e1000). All viruses had impaired replication fitness and \u3c50% reduction in integration capacity. We further determined potential novel polymorphisms associated with INSTI resistance in HIV-1 subtype A and D using simple vector machine analysis. The identified I208L and I203M, did not show reduced susceptibility to RAL or DTG with 1.3-1.8-fold and 1-1.4-fold observed, respectively. Further investigation is required to determine how these novel mutations influence susceptibility to INSTIs in HIV-1 subtype A and D infected patients

    Similar works