A decrease in the rotational period observed in torsional oscillator
measurements was recently taken as a possible indication of a supersolid state
of helium. We reexamine this interpretation and note that the decrease in the
rotation period is also consistent with a solidification of a small liquid-like
component into a low-temperature glass. Such a solidification may occur by a
low-temperature quench of topological defects (e.g., grain boundaries or
dislocations) which we examined in an earlier work. The low-temperature glass
can account for not only a monotonic decrease in the rotation period as the
temperature is lowered but also explains the peak in the dissipation occurring
near the transition point. Unlike the non-classical rotational inertia
scenario, which depends on the supersolid fraction, the dependence of the
rotational period on external parameters, e.g., the oscillator velocity,
provides an alternate interpretation of the oscillator experiments. Future
experiments might explore this effect.Comment: 10 pages, 3 figures; to appear in Phys. Rev.