CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
A commercially available capacitive stretch-sensitive sensor for measurement of rotational neck movement in healthy people: Proof of concept
Authors
I Al-Nasri
Aaron D Price
A L Trejos
D M. Walton
Publication date
1 June 2019
Publisher
Scholarship@Western
Abstract
© 2019 IEEE. Freedom of neck range of motion has been identified for decades as an important indicator of neck health. In the past, neck motion has been measured in clinical settings using straight-plane movements that do not represent real-world \u27ecological\u27 performance. The tools currently used are low-fidelity analog or digital tools that rely greatly on the orientation of the person with respect to gravity, or the evaluator\u27s ability to accurately align protractor arms with key surface markers for angle measurement. A possible solution lies in the use of wearable sensors for tracking the motion of the neck without clinical instruction. For this purpose, the focus of this paper is on the assessment of a commercially available stretch sensitive sensor, C-Stretch® against a gold standard for motion tracking. The sensor\u27s accuracy and agreement for measuring neck rotations were evaluated. The results show that the stretch sensitive sensor was accurate with an average RMSE of 5.86° (SD=4.38 {\circ}, \mathrm{n}=2) and highly correlated r=0.88-0.99,(p\lt0.01) with Aurora, an electromagnetic tracking system. This work may lead to using wearable sensors as a cost-effective, lightweight, and safe alternative to assess real-world neck range of motion for clinical application
Similar works
Full text
Available Versions
Scholarship@Western
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ir.lib.uwo.ca:boneandjoint...
Last time updated on 23/11/2020