The Study of Bubble Growth Hydrodynamics in the Supersaturated Liquids

Abstract

Bubble formation and dissolution have a wide range of industrial applications, from the production of beverages to foam manufacturing processes. The rate at which the bubble expands, or contracts has a significant effect on these processes. In the current work, the hydrodynamics of an isolated bubble expanding due to mass transfer in a pool of supersaturated gas-liquid solution is investigated. The complete scalar transportation equation (advection-diffusion) is solved numerically and it has been observed that the present model predicted an accurate bubble growth when compared with existing approximated models and experiments. The effect of gas-liquid solution parameters such as inertia, viscosity, surface tension, diffusion coefficient, system pressure, and solubility of the gas has been investigated. It is found that the surface tension and inertia have a very minimal effect during the bubble expansion. However, it is observed that the viscosity, system pressure, diffusion, and solubility have a considerable effect on bubble growth

    Similar works