High-throughput Fabrication of Drug-loaded Core-shell Tablets with Adjustable Release Profiles from Surface-erodible and Photocrosslinkable Polyanhydrides

Abstract

Controlled-release tablets enhance the effectiveness of therapies for various clinical conditions. Photocrosslinkable polyanhydrides that undergo surface erosion were recently introduced as suitable materials for manufacturing tablets with tunable release profiles. However, their erosion behavior has not been comprehensively studied. In this thesis, the erosion kinetics of photocrosslinkable polyanhydrides was studied by exploring the impact of different parameters (the polymer composition and geometry, as well as the temperature, pH, and shaking rate of the solution during the in vitro experiments) on their mass loss profiles, followed by a release kinetic model fitting. The results indicate that the temperature was the only parameter that could affect the induction period (the lag time) substantially. Moreover, polymers with the same surface area to volume ratios showed similar mass loss percentage despite their dissimilar volumes and surface areas. Although tablets with adjustable release profiles have been studied before, lack of a fast and large-scale production technique is a significant limitation that holds back their widespread application. A high-throughput fabrication platform was developed that was then utilized to manufacture controlled-release polyanhydride tablets. Tunable release profiles with the high-throughput fabricated tablets were achieved

    Similar works