Using functional RG, we reexamine the glass phase of the 2D random-field Sine
Gordon model. It is described by a line of fixed points (FP) with a
super-roughening amplitude (u(0)−u(r))2ˉ∼A(T)ln2r as
temperature T is varied. A speculation is that this line is identical to the
one found in disordered free-fermion models via exact results from ``nearly
conformal'' field theory. This however predicts A(T=0)=0, contradicting
numerics. We point out that this result may be related to failure of
dimensional reduction, and that a functional RG method incorporating higher
harmonics and non-analytic operators predicts a non-zero A(T=0) which
compares reasonably with numerics.Comment: 8 pages, 3 figures, only material adde