An experimental study was recently conducted to address the applicability of concrete shear walls entirely reinforced with glass-fiber-reinforced polymer (GFRP) bars and subjected to quasi-static reversed cyclic lateral loading in attaining reasonable strength and drift requirements specified in different codes. The reported test results clearly show that properly designed and detailed GFRP-reinforced concrete (RC) walls could reach their flexural capacities with no strength degradation. The results also demonstrate that the tested walls were able to achieve recoverable and self-centering behavior up to allowable drift limits before experiencing moderate damage and attain a maximum drift comparable to steel-RC walls. The promising results provide impetus for constructing shear walls with GFRP bars and constitute a step toward using GFRP bars in lateral-resisting systems. Since enhancing concrete confinement at the boundary might be a solution in attempting to increase the deformation capacity of GFRP-RC shear walls without significant loss of strength, a series of shear walls were constructed with different reinforcement confinement configurations at the boundary zone. This paper compares the first tested shear wall to a previously reported shear wall (Mohamed et al 2014a). The results show a significant increase in lateral drift and strength of almost 79% and 27%, respectively, by doubling the confinement reinforcement ratio of the boundary. The seismic behavior of the wall was obviously improved, and the deformability level was significantly enhanced