STR-930: CROSS LAMINATED TIMBER WALLS WITH OPENINGS: IN-PLANE STIFFNESS PREDICTION AND SENSITIVITY ANALYSIS

Abstract

Cross-laminated timber (CLT) is gaining popularity in residential and non-residential applications in the North American construction market. An accurate quantification of in-plane stiffness of the CLT walls with openings is required to design a CLT structure subjected to lateral loads. Nevertheless, till today, no general approach is available for the design of CLT-members loaded in plane and there are no standardized methods for determining the stiffness of CLT shearwalls in the respective material design standards: the CSA O86 in Canada, and the NDS in the US. This study aims to quantify the stiffness of CLT walls with openings under in-plane loading. A finite element (FE) model of CLT walls was developed modelling wood as orthotropic elastic material and the glue-lines between layers using non-linear contact elements. The FE model was verified from test results of CLT panels under in-plane loading. A parametric study was performed to evaluate the change in stiffness of CLT walls with the variation of opening size and shape. A simplified equation to predict the in-plane stiffness of CLT walls with openings was proposed. Subsequently, a sensitivity analysis was performed using Meta-model of Optimal Prognosis (MOP) to evaluate the contribution of each parameter on the model response

    Similar works