The Self-Consistent Ornstein-Zernike Approximation (SCOZA) is an accurate
liquid state theory. So far it has been tied to interactions composed of hard
core repulsion and long-range attraction, whereas real molecules have soft core
repulsion at short distances. In the present work, this is taken into account
through the introduction of an effective hard core with a diameter that depends
upon temperature only. It is found that the contribution to the configurational
internal energy due to the repulsive reference fluid is of prime importance and
must be included in the thermodynamic self-consistency requirement on which
SCOZA is based. An approximate but accurate evaluation of this contribution
relies on the virial theorem to gauge the amplitude of the pair distribution
function close to the molecular surface. Finally, the SCOZA equation is
transformed by which the problem is reformulated in terms of the usual SCOZA
with fixed hard core reference system and temperature-dependent interaction