Electrostatics plays a key role in biomolecular assembly. Oppositely charged
biomolecules, for instance, can co-assembled into functional units, such as DNA
and histone proteins into nucleosomes and actin-binding protein complexes into
cytoskeleton components, at appropriate ionic conditions. These
cationic-anionic co-assemblies often have surface charge heterogeneities that
result from the delicate balance between electrostatics and packing
constraints. Despite their importance, the precise role of surface charge
heterogeneities in the organization of cationic-anionic co-assemblies is not
well understood. We show here that co-assemblies with charge heterogeneities
strongly interact through polarization of the domains. We find that this leads
to symmetry breaking, which is important for functional capabilities, and
structural changes, which is crucial in the organization of co-assemblies. We
determine the range and strength of the attraction as a function of the
competition between the steric and hydrophobic constraints and electrostatic
interactions.Comment: JCP June/200