research

Modified Sonine approximation for the Navier-Stokes transport coefficients of a granular gas

Abstract

Motivated by the disagreement found at high dissipation between simulation data for the heat flux transport coefficients and the expressions derived from the Boltzmann equation by the standard first Sonine approximation [Brey et al., Phys. Rev. E 70, 051301 (2004); J. Phys.: Condens. Matter 17, S2489 (2005)], we implement in this paper a modified version of the first Sonine approximation in which the Maxwell-Boltzmann weight function is replaced by the homogeneous cooling state distribution. The structure of the transport coefficients is common in both approximations, the distinction appearing in the coefficient of the fourth cumulant a2a_2. Comparison with computer simulations shows that the modified approximation significantly improves the estimates for the heat flux transport coefficients at strong dissipation. In addition, the slight discrepancies between simulation and the standard first Sonine estimates for the shear viscosity and the self-diffusion coefficient are also partially corrected by the modified approximation. Finally, the extension of the modified first Sonine approximation to the transport coefficients of the Enskog kinetic theory is presented.Comment: 10 pages, 6 figures; v2: slightly shortene

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019