We use energy minimization principles to predict the structure of a decagonal
quasicrystal - d(AlCoNi) - in the Cobalt-rich phase. Monte Carlo methods are
then used to explore configurations while relaxation and molecular dynamics are
used to obtain a more realistic structure once a low energy configuration has
been found. We find five-fold symmetric decagons 12.8 A in diameter as the
characteristic formation of this composition, along with smaller
pseudo-five-fold symmetric clusters filling the spaces between the decagons. We
use our method to make comparisons with a recent experimental approximant
structure model from Sugiyama et al (2002).Comment: 10pp, 2 figure