The one dimensional Bose-Hubbard model at a unit filling factor is studied by
means of a very high order symbolic perturbative expansion. Analytical
expressions are derived for the ground state quantities such as energy per
site, variance of on-site occupation, and different correlation functions.
These findings are compared to numerics and good agreement is found in the Mott
insulator phase. Our results provide analytical approximations to important
observables in the Mott phase, and are also of direct relevance to future
experiments with ultra cold atomic gases placed in optical lattices. We also
discuss the symmetry of the Bose-Hubbard model associated with the sign change
of the tunneling coupling.Comment: 7 pages, 4 figures, 1 table. Significantly expanded version with
respect to former submission (to appear in Phys. Rev. A