We analyze interference experiments for a pair of independent one dimensional
condensates of interacting bosonic atoms at zero temperature. We show that the
distribution function of fringe amplitudes contains non-trivial information
about non-local correlations within individual condensates and can be
calculated explicitly using methods of conformal field theory. We point out
interesting relations between these distribution functions, the partition
function for a quantum impurity in a one-dimensional Luttinger liquid, and
transfer matrices of conformal field theories. We demonstrate the connection
between interference experiments in cold atoms and a variety of statistical
models ranging from stochastic growth models to two dimensional quantum
gravity. Such connection can be used to design a quantum simulator of unusual
two-dimensional models described by nonunitary conformal field theories with
negative central charges.Comment: 9 pages, 5 figures; Accepted for publication in Nature Physic