We derive the steady state properties of a general directed ``sandpile''
model in one dimension. Using a central limit theorem for dependent random
variables we find the precise conditions for the model to belong to the
universality class of the Totally Asymmetric Oslo model, thereby identifying a
large universality class of directed sandpiles. We map the avalanche size to
the area under a Brownian curve with an absorbing boundary at the origin,
motivating us to solve this Brownian curve problem. Thus, we are able to
determine the moment generating function for the avalanche-size probability in
this universality class, explicitly calculating amplitudes of the leading order
terms.Comment: 24 pages, 5 figure