There has been a recent revolution in the ability to manipulate
micrometer-sized objects on surfaces patterned by traps or obstacles of
controllable configurations and shapes. One application of this technology is
to separate particles driven across such a surface by an external force
according to some particle characteristic such as size or index of refraction.
The surface features cause the trajectories of particles driven across the
surface to deviate from the direction of the force by an amount that depends on
the particular characteristic, thus leading to sorting. While models of this
behavior have provided a good understanding of these observations, the
solutions have so far been primarily numerical. In this paper we provide
analytic predictions for the dependence of the angle between the direction of
motion and the external force on a number of model parameters for periodic as
well as random surfaces. We test these predictions against exact numerical
simulations