research

Antiferromagnetism and hot spots in CeIn3_3

Abstract

Enormous mass enhancement at ''hot spots'' on the Fermi surface (FS) of CeIn3_3 has been reported at strong magnetic field near its antiferromagnetic (AFM) quantum critical point [T. Ebihara et al., Phys. Rev. Lett. 93, 246401 (2004)] and ascribed to anomalous spin fluctuations at these spots. The ''hot spots'' lie at the positions on FS where in non-magnetic LaIn3_3 the narrow necks are protruded. In paramagnetic phase CeIn3_3 has similar spectrum. We show that in the presence of AFM ordering its FS undergoes a topological change at the onset of AFM order that truncates the necks at the ''hot spots'' for one of the branches. Applied field leads to the logarithmic divergence of the dHvA effective mass when the electron trajectory passes near or through the neck positions. This effect explains the observed dHvA mass enhancement at the ''hot spots'' and leads to interesting predictions concerning the spin-dependence of the effective electron mass. The (T,B)-phase diagram of CeIn3_3, constructed in terms of the Landau functional, is in agreement with experiment.Comment: 4 pages, 1 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020
    Last time updated on 27/12/2021