Enormous mass enhancement at ''hot spots'' on the Fermi surface (FS) of
CeIn3 has been reported at strong magnetic field near its antiferromagnetic
(AFM) quantum critical point [T. Ebihara et al., Phys. Rev. Lett. 93, 246401
(2004)] and ascribed to anomalous spin fluctuations at these spots. The ''hot
spots'' lie at the positions on FS where in non-magnetic LaIn3 the narrow
necks are protruded. In paramagnetic phase CeIn3 has similar spectrum. We
show that in the presence of AFM ordering its FS undergoes a topological change
at the onset of AFM order that truncates the necks at the ''hot spots'' for one
of the branches. Applied field leads to the logarithmic divergence of the dHvA
effective mass when the electron trajectory passes near or through the neck
positions. This effect explains the observed dHvA mass enhancement at the ''hot
spots'' and leads to interesting predictions concerning the spin-dependence of
the effective electron mass. The (T,B)-phase diagram of CeIn3, constructed
in terms of the Landau functional, is in agreement with experiment.Comment: 4 pages, 1 figur