Taking into account stress fluctuations due to thermal noise, we study
thermally activated irreversible crack growth in disordered media. The
influence of material disorder on sub-critical growth of a single crack in
two-dimensional brittle elastic material is described through the introduction
of a rupture threshold distribution. We derive analytical predictions for crack
growth velocity and material lifetime in agreement with direct numerical
calculations. It is claimed that crack growth process is inhibited by disorder:
velocity decreases and lifetime increases with disorder. More precisely,
lifetime is shown to follow a super-Arrhenius law, with an effective
temperature theta - theta_d, where theta is related to the thermodynamical
temperature and theta_d to the disorder variance.Comment: Submitted to Europhysics Letter