We investigate the formation of nanogaps in gold wires due to
electromigration. We show that the breaking process will not start until a
local temperature of typically 400 K is reached by Joule heating. This value is
rather independent of the temperature of the sample environment (4.2-295 K).
Furthermore, we demonstrate that the breaking dynamics can be controlled by
minimizing the total series resistance of the system. In this way, the local
temperature rise just before break down is limited and melting effects are
prevented. Hence, electrodes with gaps < 2 nm are easily made, without the need
of active feedback. For optimized samples, we observe quantized conductance
steps prior the gap formation.Comment: including 7 figure